

Werkstoffdatenblatt

Weiche Stähle zum Kaltumformen

Materials Services Materials Germany Technischer Verkauf

Seite 1/3

Stahlbezeichnung:	Kurzname	Werkstoff-Nr.		
	DC01	1.0330		
	DC03	1.0347		
	DC04	1.0338		
	DC05	1.0312		
	DC06	1.0873		
	DC07	1.0898		

Geltungsbereich

Dieses Datenblatt gilt für kaltgewalzte Flacherzeugnisse aus weichen Stählen zum Kaltumformen.

Anwendung

Die Stahlbleche werden wegen ihrer vielseitigen Eigenschaften in zahlreichen Anwendungsgebieten eingesetzt. Automobilindustrie, Haushaltsgeräteindustrie, Stahlmöbelbau, Emballagen- und Behälterbau.

Chemische Zusammensetzung (Schmelzenanalyse in %)

Stahlsorte	С	Р	S	Mn	Ti
DC01	≤ 0,12	≤ 0,045	≤ 0,045	≤ 0,60	-
DC03	≤ 0,10	≤ 0,035	≤ 0,035	≤ 0,45	-
DC04	≤ 0,08	≤ 0,030	≤ 0,030	≤ 0,40	-
DC05	≤ 0,06	≤ 0,025	≤ 0,025	≤ 0,35	-
DC06	≤ 0,02	≤ 0,020	≤ 0,020	≤ 0,25	≤ 0,31)
DC07	≤ 0,01	≤ 0,020	≤ 0,020	≤ 0,20	≤ 0,21)

¹⁾ Titan darf durch Niob ersetzt werden. Der Kohlenstoff und der Stickstoff müssen vollständig abgebunden sein.

Mechanische Eigenschaften bei Raumtemperatur

Bezeichnung	R _e ²⁾	R _m	A ₈₀ ³⁾	r ₉₀ ^{4), 5)}	n ₉₀ ⁴⁾
	max.		min.	min.	min.
	N/mm²	N/mm²	%		
DC011)	2806),7)	270–410	28	-	-
DC03	240 ⁶⁾	270–370	34	1,3	-
DC04	210 ⁶⁾	270–350	38	1,6	0,18
DC05	180 ⁶⁾	270–330	40	1,9	0,20
DC06	1708)	270–330	41	2,1	0,22
DC07	1508)	250–310	44	2,5	0,23

Es wird empfohlen Erzeugnisse aus der Stahlsorte DC01 innerhalb von 6 Wochen nach der Zurverfügungstellung zu verarbeiten.

Anhaltsangaben für einige physikalische Eigenschaften

Dichte bei 20 °C	Elastizitätsmodul kN/mm² bei		Wärmeleitfähigkeit bei 20 °C	spez. Wärmekapazität bei 20°C	spez. elektrischer Widerstand bei 20 °C		
kg/dm³	20 °C	100 °C	200 °C	300 °C	W/m K	J/kg K	Ω mm 2 /m
7,85	210	205	197	190	48	461	0,15

Mittlerer linearer Wärmeausdehnungskoeffizient 10-6 K-1 zwischen 20 °C und

100 °C	200 °C	300 °C	400 °C	500°C
11,9	12,7	13,1	13,6	14,4

Verarbeitung/Schweißen

Die Umformbarkeit von Flacherzeugnissen aus weichen Stählen wird in erster Linie durch den *r*- und *n*-Wert gekennzeichnet.

Die Anisotropie *r* hilft bei der Beschreibung des Tiefziehverhaltens. Der *r*-Wert ist das Verhältnis der Breiten- zur Dickenformänderung einer durch gleichmäßiges Recken verformten Zugprobe. Für Tiefziehbeanspruchung ist es günstig, wenn die Änderung der Dicke nur gering ist und die stärksten Änderungen in der Breite erfolgen. Bestes Tiefziehverhalten liegt vor, wenn der *r*-Wert möglichst hoch über 1 liegt.

Der Verfestigungsexponent n ist ein Maß dafür, wieweit ein Flachprodukt gereckt werden kann, ohne dass eine Einschnürung auftritt. Er entspricht etwa der Gleichmaßdehnung und beschreibt die Verfestigung des Stahls. Die verformte Stelle wehrt sich, bis alle daneben liegenden Stellen auch verformt werden. Dies führt zum gleichmäßigen Fließen. Hohe n-Werte bedeuten eine gute Eignung der Flachprodukte zum Streckziehen.

Flachprodukte aus DC01 - DC07 lassen sich mit allen gängigen Verfahren Widerstands- und Schmelzschweißen, löten, kleben, falzen und clinchen.

Das wichtigste Fügeverfahren für Stahl stellt das Schweißen. Bei dem in der Industrie eingesetzten Feinblech ist besonders das Punktschweißen zu nennen. Ein weiteres wichtiges Verfahren ist das Laser-Schweißen. Durch das geringere, stark lokalisierte Wärmeeinbringen weist dieses Verfahren im sehr schmalen Schweißbereich kaum eine Beeinträchtigung der mechanischen und der Oberflächeneigenschaften auf.

²⁾ Für Erzeugnisse, die keine eindeutige Streckgrenze aufweisen, gelten für die Werte der Streckgrenze die der 0,2 % Dehngrenze (R_{e0.2}), für andere Erzeugnisse gelten die Werte für die der unteren Streckgrenze (R_{e0.2}). Bei Dicken ≤ 0,7 mm, jedoch > 0,5 mm, sind um 20 N/mm² höhere Maximalwerte für die Streckgrenze zulässig. Bei Dicken ≤ 0,5 mm sind um 40 N/mm² höhere Maximalwerte für die Streckgrenze zulässig.

³⁰ Bei Dicken ≤ 0,7 mm, jedoch > 0,5 mm, sind um 2 Einheiten niedrigere Mindestwerte für die Bruchdehnung zulässig. Bei Dicken ≤ 0,5 mm sind um 4 Einheiten niedrigere Mindestwerte für die Bruchdehnung zulässig.

⁴⁾ Die r₉₀- und n₉₀-Werte gelten für Erzeugnisdicken ≥ 0,5 mm.

 $^{^{5)}}$ Für Dicken > 2,0 mm vermindert sich der r_{90} -Wert um 0,2.

[®] Für Konstruktionszwecke darf bei den Stahlsorten DC01, DC03, DC04 und DC05 ein Mindestwert der Streckgrenze (R_a) von 140 N/mm² angenommen werden

Der obere Grenzwert R_e von 280 MPa gilt bei der Stahlsorte DC01 nur für eine Frist von 8 Tagen nach der Zurverfügungstellung des Erzeugnisses

B Für Konstruktionszwecke darf bei den Stahlsorten DC06 ein Mindestwert der Streckgrenze (Re) von 120 N/mm² und bei der Stahlsorte DC07 von 100 N/mm² angenommen werden.

Lasergeschweißte Nähte können wegen ihrer geringen Überhöhung auch in den engen Ziehspalten von Presswerkzeugen problemlos verformt werden.

Bemerkung

Der Werkstoff ist magnetisierbar.

Herausgeber

thyssenkrupp Schulte GmbH Technischer Verkauf thyssenkrupp Allee 1 45143 Essen

Literaturhinweis

DIN EN 10130-1 : 2007-02 Beuth Verlag GmbH, Postfach, D-10772 Berlin

Wichtiger Hinweis

Die in diesem Datenblatt enthaltenen Angaben über die Beschaffenheit oder Verwendbarkeit von Materialien bzw. Erzeugnissen sind keine Eigenschaftszusicherungen, sondern dienen der Beschreibung. Die Angaben, mit denen wir Sie beraten wollen, entsprechen den Erfahrungen des Herstellers und unseren eigenen. Eine Gewähr für die Ergebnisse bei der Verarbeitung und Anwendung der Produkte können wir nicht übernehmen.