

Werkstoffdatenblatt

Unlegierte Vergütungsstähle

Materials Services Technology, Innovation & Sustainability

Seite 1/3

Werkstoffbezeichnung:	Kurzname	Werkstoff-Nr.
	C40	1.0511
	C45	1.0503
	C55	1.0535
	C60	1.0601

Geltungsbereich

Dieses Datenblatt gilt für Flach- und Langerzeugnisse aus unlegierten Vergütungsstählen.

Anwendung

Diese Stähle werden überwiegend für Bauteile im Maschinen- und Fahrzeugbau im normalgeglühten oder vergüteten Zustand verwendet.

Chemische Zusammensetzung (Schmelzenanalyse in %)

Stahlsorte	С	Si	Mn	Р	S	Cr	Mo	Ni	V	Cr+Mo+Ni		
C40	0,37–0,44		0,50–0,80	MAINGLESCONGES	< 0.04E	4 0 40	, 0 10	. 0. 40		40.67		
C45	0,42–0,50	≤ 0,40		< 0.04E								
C55	0,52-0,60	≥ 0,40		0.00.000	0.60,000	≤ 0,045	≤ 0,045	≤ 0,40	≤ 0,10	≤ 0,40	-	≤ 0,63
C60	0,57–0,65											

Mechanische Eigenschaften bei Raumtemperatur im vergüteten Zustand (+N)

Stahlsorte		$d \leq 16mm$ $t \leq 16mm$			nm < d ≤ 100 nm < t ≤ 100ı		100mm < d ≤ 250mm 100mm < t ≤ 250mm			
Stariisorte	R _e min. N/mm²	R _m min. N/mm²	A min. %	R _e min. N/mm²	R _m min. N/mm²	A min. %	R _e min. N/mm²	R _m min. N/mm²	A min. %	
C40	320	580	16	290	550	17	260	530	17	
C45	340	620	14	305	580	16	275	560	16	
C55	370	680	11	330	640	12	300	620	12	
C60	380	710	10	340	670	11	310	650	11	

Mechanische Eigenschaften bei Raumtemperatur im vergüteten Zustand (+QT)

	d ≤ 16mm t ≤ 8mm				16mm < d ≤ 40mm 8mm < t ≤ 20mm				$40mm < d \le 100mm$ $20mm < t \le 60mm$							
Stahlsorte	R _e min.	R _m min.	A min.	Z min.	KV min.	R _e min.	R _m min.	A min.	Z min.	KV min.	R _e min.	R _m min.	A min.	Z min.	KV min.	
	N/m	nm²	%	%	J	N/n	nm²	%	%	J	N/n	nm²	%	%	J	
C40	460	650– 800	16	35		400	630– 780	18	- 40		350	600– 750	19	45		
C45	490	700– 850	14	35			430	650– 800	16	40		370	630– 780	17	45	
C55	550	800– 950	12	30	_	490	750– 900	14	35	_	420	700– 850	15	40		
C60	580	850– 1000	11	25		520	800– 950	13	30		450	750– 900	14	35		

 R_c : Obere Streckgrenze oder, falls keine ausgeprägte Streckgrenze auftritt, 0,2 %-Dehngrenze $R_{sp.2}$; R_m : Zugfestigkeit ; A: Bruchdehnung (Anfangsmesslänge L_o = 5,65 $\sqrt{S_o}$). KV: Kerbschlagarbeit für Charpy-V-Längsproben (Mittel aus 3 Einzelwerten; kein Einzelwert darf kleiner sein als 70 % des Mindestmittelwertes)

Anhaltsangaben über physikalische Eigenschaften

Dichte bei 20°C		Elastizitä kN/mr	tsmodul n² bei		Wärmeleitfähigkeit bei 20°C	spez. Wärmekapazität bei 20°C	spez. elektrischer Widerstand bei 20 °C Ω mm²/m	
Kg/dm³	20 °C	100 °C	200 °C	300 °C	W/m K	J/kg K		
7,85	212	207	199	192	41,7	461	0,250	

Linearer Wärmeausdehnungskoeffizient 10⁻⁶ K⁻¹ zwischen 20 °C und

100 °C	200 °C	300 °C	400 °C	500 °C
12,5	13,0	13,6	14,1	14,5

Wärmebehandlung

Stahlsorte	Härten °C	Abschreckmittel	Anlassen °C 1)	Stirnabschreck- versuch °C	Normalglühen °C ²⁾
C40	830–870	Wasser oder Öl			850–910
C45	820–860	wasser oder Oi	EEO bio 660		840–900
C55	810–850	Öl adan Massan	550 bis 660	_	825–885
C60	810–850	Öl oder Wasser			820–880

¹⁾ Anlassdauer mindestens 60 min (Anhaltswert)

²⁾ Austenitisierungsdauer mindestens 30 min (Anhaltswert)

Schweißen

Unlegierte, 0,35 bis 0,70 % C-haltige Vergütungsstähle sind schwierig mittels offener Lichtbogenschweißverfahren zu schweißen. Mit steigendem Kohlenstoffgehalt besteht die Gefahr der Aufhärtung in der Wärmeeinflußzone und dem Schweißgut. Vor dem Schweißen muss klar sein, ob der Stahl im normalgeglühten oder vergüteten Zustand vorliegt oder ob nach dem Schweißen vergütet wird. Vorwärmen, Einhalten der Arbeitstemperatur (dem jeweiligen ZTU-Diagramm zu entnehmen) und eine langsame Abkühlung sind im Allgemeinen erforderlich. Pauschale Regeln für die Temperaturen und die Schweißzusätze gibt es nicht. Als Schweißzusätze kommen unlegierte Mn- oder Mo-haltige Typen zur Anwendung, die einen geringeren C-Gehalt als die Stähle aufweisen. Bedingt durch den niedrigen C-Gehalt des Schweißgutes weichen die mechanischen Gütewerte von denen des Grundwerkstoffes ab. Dies sollte bei der Konstruktion im Vorfeld berücksichtigt werden.

Für besondere anwendungstechnische Probleme stehen hinsichtlich der Schweißtechnik Schweißfachingenieure zur Verfügung.

Verarbeitung

Vergütungsstähle lassen sich in der Wärme gut verformen. Die Kaltumformbarkeit ist abhängig vom Kohlenstoffgehalt und der Gefügeausbildung. Die Zerspanbarkeit wird ebenfalls durch die Gefügeausbildung stark beeinflusst.

Bemerkung

Der Werkstoff ist magnetisierbar.

Herausgeber

thyssenkrupp Materials Services GmbH Technology, Innovation & Sustainability (TIS) thyssenkrupp Allee 1 45143 Essen

Literaturhinweis

DIN EN 10083-2 : 2006-10

Beuth Verlag GmbH, Postfach, D-10772 Berlin

Böhler Schweisstechnik Deutschland GmbH, Hamm

Wichtiger Hinweis

Die in diesem Datenblatt enthaltenen Angaben über die Beschaffenheit oder Verwendbarkeit von Materialien bzw. Erzeugnissen sind keine Eigenschaftszusicherungen, sondern dienen der Beschreibung.

Die Angaben, mit denen wir Sie beraten wollen, entsprechen den Erfahrungen des Herstellers und unseren eigenen. Eine Gewähr für die Ergebnisse bei der Verarbeitung und Anwendung der Produkte können wir nicht übernehmen.